Penerapan Algoritma K-Means Clustering Pada Tingkat Inflasi Kota Di Indonesia

Authors

  • Novia Wulandari STMIK IKMI Cirebon
  • Nisa Dienwati Nuris STMIK IKMI Cirebon
  • Saeful Anwar STMIK IKMI Cirebon

DOI:

https://doi.org/10.55606/akuntansi.v2i2.235

Keywords:

Inflation, Data Mining, K-Means, Clustering

Abstract

Inflation is a general tendency to increase the prices of goods and services, and it happens all the time. when the prices of domestic goods and services rise, inflation will rise. Depreciation causes the prices of goods and services to rise. Uncontrolled inflation can result in losses for society and the government. Therefore, an appropriate study is needed to map the dynamics of inflation in a region. One way to map the inflation rate is clustering. Clustering is dividing data into groups with the same characteristics. The author took the initiative to analyze the urban inflation rate in Indonesia from 2020 to 2022. The data is sourced from the Central Statistics Agency (BPS) website. This analysis uses the K-Means Clustering method with 5 clusters. the group with the highest inflation is in cluster 0, the high inflation group is in cluster 1, the moderate inflation group is in cluster 2, the low inflation group is in cluster 3, and the lowest inflation is in cluster 4. by categorizing the inflation rate of cities in Indonesia, it can be seen which cities in Indonesia have very high, high, medium, low and very low inflation rates.

References

Darmansah, D. D. (2021). Analisis Penyebaran Penularan Virus Covid-19 di Provinsi Jawa Barat Menggunakan Algoritma K-Means Clustering. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(3), 1188–1199. https://doi.org/10.35957/jatisi.v8i3.1034

Fuady, M., & Nugraha, J. (2017). Implementasi Metode K-Means Dan K-Medoids Untuk Mengelompokkan 82 Kota Di Indonesia Berdasarkan Indeks Harga Konsumen. Prosiding Seminar Nasional Seri 7, 327–337.

Handayani, F. (2022). Aplikasi Aplikasi Data Mining Menggunakan Algoritma K-Means Clustering untuk Mengelompokan Mahasiswa Berdasarkan Gaya Belajar. Jurnal Teknologi Dan Informasi, 12(1), 46–63. https://doi.org/10.34010/jati.v12i1.6733

Hardiani, T. (2022). Analisis Clustering Kasus Covid 19 di Indonesia Menggunakan Algoritma K-Means. Jurnal Nasional Pendidikan Teknik Informatika (JANAPATI), 11(2), 156–165. https://doi.org/10.23887/janapati.v11i2.45376

Mulyani, R. (2020). Inflasi dan Cara Mengatasinya dalam Islam. Lisyabab : Jurnal Studi Islam Dan Sosial, 1(2), 267–278. https://doi.org/10.58326/jurnallisyabab.v1i2.47

Muttaqin, M. R., & Defriani, M. (2020). Algoritma K-Means untuk Pengelompokan Topik Skripsi Mahasiswa. ILKOM Jurnal Ilmiah, 12(2), 121–129. https://doi.org/10.33096/ilkom.v12i2.542.121-129

Nabila, Z., Rahman Isnain, A., & Abidin, Z. (2021). ANALISIS DATA MINING UNTUK CLUSTERING KASUS COVID-19 DI PROVINSI LAMPUNG DENGAN ALGORITMA K-MEANS. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI

Priyatman, H., Sajid, F., & Haldivany, D. (2019). Klasterisasi Menggunakan Algoritma K-Means Clustering untuk Memprediksi Waktu Kelulusan Mahasiswa. Jurnal Edukasi Dan Penelitian Informatika (JEPIN), 5(1), 62. https://doi.org/10.26418/jp.v5i1.29611

Santosa, A. B. (2017). Analisis Inflasi di Indonesia. Prosiding Seminar Nasional Multi Disiplin Ilmu & Call Papers UNISBANK Ke-3 (SENDI_U 3) 2017, 445–452.

Sudibyo, N. A. (2020). Implementasi Metode K-means untuk Mengelompokkan Tingkat Inflasi di Indonesia Article Penerapan Multimedia Pembelajaran Interaktif Elektronika dengan Framework RAD (Rapid Application Development) Menggunakan HTML View project. https://www.researchgate.net/publication/353767505

Downloads

Published

2023-05-09

How to Cite

Novia Wulandari, Nisa Dienwati Nuris, & Saeful Anwar. (2023). Penerapan Algoritma K-Means Clustering Pada Tingkat Inflasi Kota Di Indonesia. Akuntansi, 2(2), 15–34. https://doi.org/10.55606/akuntansi.v2i2.235

Similar Articles

<< < 11 12 13 14 15 16 17 > >> 

You may also start an advanced similarity search for this article.